Step of Proof: pos_mul_arg_bounds
12,41
postcript
pdf
Inference at
*
2
2
I
of proof for Lemma
pos
mul
arg
bounds
:
1.
a
:
2.
b
:
3.
a
< 0
4.
b
< 0
(
a
*
b
) > 0
latex
by ((ReplaceWithEqv (TryC (HigherC IntSimpC)) ((-
a
) * (-
b
)) > 0 0)
CollapseTHENA (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
((-
a
) * (-
b
)) > 0
C
.
Definitions
P
Q
,
P
&
Q
,
t
T
,
True
,
T
,
,
P
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
i
>
j
Lemmas
true
wf
,
squash
wf
,
gt
wf
origin